Stabilization of the Cubic Crystalline Phase in Organometal Halide Perovskite Quantum Dots via Surface Energy Manipulation.

نویسندگان

  • Som Sarang
  • Sara Bonabi Naghadeh
  • Binbin Luo
  • Parveen Kumar
  • Edwin Betady
  • Vincent Tung
  • Michael Scheibner
  • Jin Z Zhang
  • Sayantani Ghosh
چکیده

Surface functionalization of nanoscale materials has a significant impact on their properties. We have demonstrated the effect of different passivating ligands on the crystal phase of organometal halide perovskite quantum dots (PQDs). Using static and dynamic spectroscopy, we studied phase transitions in CH3NH3PbBr3 PQDs ligated with either octylaminebromide (P-OABr) or 3-aminopropyl triethoxysilane (P-APTES). Around 140 K, P-OABr underwent a structural phase transition from tetragonal to orthorhombic, established by the emergence of a higher energy band in the photoluminescence (PL) spectrum. This was not observed in P-APTES, despite cooling down to 20 K. Additionally, time-resolved and excitation power-dependent PL, as well as Raman spectroscopy over a range of 300-20 K, revealed that recombination rates and types of charge carriers involved are significantly different in P-APTES and P-OABr. Our findings highlight how aspects of PQD phase stabilization are linked to nanoscale morphology and the crystal phase diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics

Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper boun...

متن کامل

Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is cr...

متن کامل

Field-emission from quantum-dot-in-perovskite solids

Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emiss...

متن کامل

The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-...

متن کامل

Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence

Organic-inorganic perovskite materials, typically methylammonium lead trihalide (MAPbX3: MA = methylammonium; X = Br, I), are recently attract enormous attention for their distinguished photo-electronic properties. The control of morphology, composition and dispersability of MAPbX3 perovskite nanocrystals is crucial for the property tailoring and still a major challenge. Here we report the synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 8 21  شماره 

صفحات  -

تاریخ انتشار 2017